- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cabello, Bian (2)
-
Lin, Zhixing (2)
-
Davé, Rajesh (1)
-
Davé, Rajesh N (1)
-
Kossor, Christopher (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The possibility of attaining direct compression (DC) tableting using silica coated fine particle sized excipients was examined for high drug loaded (DL) binary blends of APIs. Three APIs, very-cohesive micronized acetaminophen (mAPAP, 7 μm), cohesive acetaminophen (cAPAP, 23 μm), and easy-flowing ibuprofen (IBU, 53 μm), were selected. High DL (60 wt%) binary blends were prepared with different fine-milled MCC-based excipients (ranging 20- 37 μm) with or without A200 silica coating during milling. The blend flowability (flow function coefficient −FFC) and bulk density (BD) of the blends for all three APIs were significantly improved by 1 wt% A200 dry coated MCCs; reaching FFC of 4.28 from 2.14, 7.82 from 2.96, and > 10 from 5.57, for mAPAP, cAPAP, and IBU blends, respectively, compared to the uncoated MCC blends. No negative impact was observed on the tablet tensile strength (TS) by using dry coated MCCs despite lower surface energy of silica. Instead, the desired tablet TS levels were reached or exceeded, even above that for the blends with uncoated milled MCCs. The novelty here is that milled and silica coated fine MCCs could promote DC tableting for cAPAP and IBU blends at 60 wt% DL through adequate flowability and tensile strength, without having to dry coat the APIs. The effect of the silica amount was investigated, indicating lesser had a positive impact on TS, whereas the higher amount had a positive impact on flowability. Thus, the finer excipient size and silica amounts may be adjusted to potentially attain blend DC processability for high DL blends of fine APIs.more » « less
-
Lin, Zhixing; Cabello, Bian; Davé, Rajesh N (, International Journal of Pharmaceutics)Previous work demonstrated the benefits of dry coating fine-grade microcrystalline cellulose (MCC) for enabling direct compression (DC), a favored tablet manufacturing method, due to enhanced flowability while retaining good compactability of placebo and binary blends of cohesive APIs. Here, fine brittle excipients, Pharmatose 450 (P450, 19 μm) and Pharmatose 350 (P350, 29 μm), having both poor flowability and compactability are dry coated with silica A200 or R972P to assess DC capability of multi-component cohesive API (coarse acetaminophen, 22 μm, and ibuprofen50, 47 μm) blends. Dry coated P450 and P350 not only attained excellent flowability and high bulk density but also heightened tensile strength hence processability, which contrasts with reported reduction for dry coated ductile MCC. Although hydrophobic R972P imparted better flowability, hydrophilic A200 better enhanced tensile strength, hence selected for dry coating P450 in multi-component blends that included fine Avicel PH-105. For coarse acetaminophen blends, substantial bulk density and flowability increase without any detrimental effect on tensile strength were observed; a lesser amount of dry coated P450 was better. Increased flowability, bulk density, and tensile strength, hence enhanced processability by reaching DC capability, were observed for 60 wt% ibuprofen50, using only 18 wt% of the dry coated P450, i.e. 0.18 wt% silica in the blend.more » « less
An official website of the United States government
